Nat 5 Trigonometry

3. The diagram shows the positions of two ships, Arcadia (A) and Corona (C). The Corona is 500metres due East of the Arcadia.

The lighthouse Blinker (B) is sighted on a bearing 030° from A and on a bearing of 325° from C.

Calculate how far the Arcadia is from the lighthouse.

4

4. The diagram below represents the positions of three mobile phone masts.

Mast Q is on a bearing of 100° from mast P and is 40km away. The bearing of mast R from mast Q is 150°. Masts Q and R are 52 km apart.

7. Solve the equation $7\cos x^\circ + 1 = 5$, $0 \le x \le 360^\circ$ 3

8. A Ferris wheel at a fairground turns at a steady rate.

The height, *h* metres, of one of the cars above the ground at a time *t* seconds is given by the formula $h = 9 + 4\sin t^{\circ}$

- (a) What is the height of the car after 25 seconds? 2
- (b) Find the two times during the first turn when the car is at a height of 12.5 metres above the ground 3

9. Simplify
$$\frac{\cos^3 x^\circ}{1 - \sin^2 x^\circ}$$
 2

Answers
1. Area =
$$\frac{1}{2} \times 6 \times 4.9 \times \sin 72^{\circ}$$
, 14 m²
2. $CosB = \frac{19^{2} + 23^{2} - 8^{2}}{2 \times 19 \times 23}$, $CosB = \frac{413}{437} = 0.94508009$, B = 19°
3. $\angle BAC = 60^{\circ}$, $\angle BCA = 55^{\circ}$, so $\angle ABC = 65^{\circ}$
Use Sine rule to find AB AB = $(500\sin 55^{\circ}) \div \sin 65^{\circ}$, AB = 452m
4. (a) $360^{\circ} - 150^{\circ} - 80^{\circ} = 130^{\circ}$
(b) $PR^{2} = 40^{2} + 52^{2} - 2x40x52x\cos 130^{\circ}$
 $PR^{2} = 6977.99645$ PR = 83.5 km
5. $3\frac{1}{9}$

Max 3, min -3, two repetitions in 360°

6. From the graph of $y = \cos x^{\circ}$

7.
$$\cos x = 4/5$$
, $x = 55^{\circ}$ and $x = 360^{\circ} - 55^{\circ} = 305^{\circ}$
8. (a) $h = 9 + 4 \sin(25^{\circ}) = 10.7$ metres
(b) $12.5 = 9 + 4\sin t^{\circ}$,
 $\sin t = 3.5/4$, $t = 61^{\circ}$ and $x = 180^{\circ} - 61^{\circ} = 119^{\circ}$
9. Use $\sin^2 x + \cos^2 x = 1$, $\cos^3 x = \cos^3 x = \cos^3 x$
So $\cos^2 x = 1 - \sin^2 x$ $1 - \sin^2 x$ $\cos^2 x$

Extra help – Trigonometry

	Examples to read	Questions to try
1	Area Formulae	
	Ex 25.1 Page 292	Q1 Page 293
2	Cosine Rule for an angle	
	Ex 26.4 Page 303	Q1 Page 303
3	Sine Rule and bearings	
	Ex 27.2 Page 309	Q1 Page 309, Q3 Page 310
4	Cosine Rule for sides and z-angles	
	Ex 27.1 Page 307/8	Q3 Page 309, Q5 Page 310
5	Transformation of Sine Graph	
	Ex 23.4 Page 255	Q1,2 Page 257
6	Key points on the Cosine Graph	
	Ex 24.1 Page 272	Q1 Page 272
7/8	Solving Trig Equations	Q1 Page 279
	Ex 24.7 Pages 278/9	Q3 & 4 Page 279
9	Trig Identities	
	Ex 24.12 Page 287	Q1 & 4 Page 287